

PLACE-BASED STEM **EDUCATION: PEDAGOGY AND** PRACTICE IN SCIENCE AND AGRICULTURAL **EDUCATION**

George E. Glasson, Ph.D. Virginia Tech Blacksburg, Virginia (USA)

Place-based STEM education: Pedagogy and Practice

- Inquiry Learning
- 5-E Learning Cycle Model: Problem Solving and Inquiry-by-Design
- Connecting local to global: Examples of Place-based
 STEM Education Lessons
- Sample lesson Plans

What is inquiry learning?

Inquiry Learning

- Learning begins with prior knowledge and experiences
- Learning begins with concrete experiences and proceeds to abstract thinking (Piaget)
- Learning is situated in culture and environment (Vygotsky)

Learning Begins with Prior Knowledge and Experiences

Blacksburg, VA Winter

What is your prior knowledge and life experiences?

Learning Begins with Prior Knowledge and Experiences

Blacksburg, VA summer time

How many seasons are in Malawi?

Why do we have different seasons?

Seasons caused by tilt of earth.

How do you challenge students prior knowledge?

Discrepant Events

Puzzling activity

Cognitive Disequilibrium (Piaget)

Learning Theory: Piaget

Concrete > Abstract

Physics Student Teachers Virginia Tech

What do you observe? What do you interpret?

Learning Theory: Piaget

Concrete Operational Thought

Hands-on Instruction!

Lampang Province, Rural Thailand

Learning Theory: Piaget

Formal Operational Thought

Abstract Thinking

Learning is Situated in Culture and Environment: Vygotsky

Learning From Elders Zomba, Malawi

Situated Learning (Lave and Wenger)

Learning in Socio-cultural context

Virginia Tech Student Teachers

Situated Learning

Collaboration
Designing Solutions

Problem-Solving Questioning

Sharing Results

5-E Learning Cycle Model Lesson

Model for inquiry learning and problem-solving

5-E Learning Cycle Lesson: Engage

Why do you think the water stay in the straw?

5-E Learning Cycle Model

5-E Learning Cycle Lesson: Explore

What do you think will happen to the water? Prediction Question Discrepant Event

5-E Learning Cycle Lesson: Explain

Draw a diagram and label the forces.

5-E Learning Cycle Lesson: Explain

Explain diagram and forces

5-E Learning Cycle Lesson: Elaboration

Design a Balloon Rocket

Air pressure released

Newton's Third Law: every action there is equal and opposite

reaction

5-E Learning Cycle Lesson: Elaboration

Southeast Regional Climate Cente

How to Make a Barometer

Materials Needed:

- small glass jar or tin can
- large (12") round balloon
- rubber band
- scissors
- tape
- small stirring stick
- 5" x 7" index card

5-E Learning Cycle Lesson: Elaboration

High and Low Pressure Weather Systems

Inquiry-by-Design: Elaboration

- Identify the problem
- Brainstorm ideas that will help solve problem
- Apply science and mathematics concepts
- Analyze resource issues
- Choose the best technologies and methods of data analysis for solving the problem
- Evaluating the solution

Place-based STEM Education in Thailand

Connecting local with global

Investigating Water Quality

Dr. Rose Klechaya

Lampang Province: Hill Tribe People

Water Testing local river

• Lessons connect with Thai National Curriculum

- Teacher and student inquiry
- Result shared with local farmers

• Inquiry Learning: Connecting local with global knowledge

Inquiry Teaching and Learning

Inquiry engages students in:

- * questioning
- * critical thinking
- * analyzing evidence

* problem-solving and design

Third Space Theory: Connecting local knowledge with modern science

Local Knowledge

Hybrid Knowledge Modern Science

First Space

Third Space

Second Space

Bhabha, 1994; Wallace, 2004; Glasson et al., 2010

Sample Place-based STEM Lesson Plans: Virginia Tech Student Teachers

- Size Limits of Cells:
- Watersheds: Ink
- Water Pollution:
- Designing Water Filters:
- Salt Water Fish Farms: Ink

Place-based STEM Education

Local environmental and/or agricultural Issue	Science, Engineering, & Agricultural Practices	Science Core Ideas Cross cutting concepts	Community Resources	Student Activities

Science	Engineering and Agricultural Practices		
Asking Questions	Defining Problems		
Developing and Using Models			
Planning and Carrying Out Investigations			
Analyzing and Interpreting Data			
Using Mathematics and Computational Thinking			
Constructing Explanations	Designing Solutions		
Engaging in Argument for Evidence			
Obtaining, Evaluating, and Communicating Information			

Place-based STEM Education: 5-E Model Lesson

Title	
Purpose/Rationale	
Science Core Ideas	
Science, Engineering, Agricultural Practices	
Materials and Community Resources	
Safety and Class Management Issues	
Engage	
Explore	
Explain	
Elaborate	
Evaluate	